We are Live!


The city inspector came this morning and signed off, so we flipped the switch and started generating electricity.

Right away the system monitor displayed all kinds of information, showing the electricity coming in from the solar panels, going out to the batteries, and the total KWh generated for the day. With the sun barely up over the mountains, the panels delivered 500 watts. As the sun got higher at 11:30 a.m., the panels delivered 1200 watts (1.2 KW). The panels are rated at 1700 watts, but the panels never got a chance to reach their limit. By the time the sun was at its height, the batteries were fully charged (they came charged) and the monitor cut back on the energy that went to the batteries. The system monitor acts like a traffic cop, preventing the panels from overcharging the batteries.

The freezer and the refrigerator are plugged into the system and are running well. When their motors are not running, the monitor allows 170 watts go to the batteries. When I can hear the refrigerator motor running, the monitor allows 300 watts to go to the batteries. When I can hear both motors running, the monitor allows 430 watts to go to the batteries.

I wish I could have measured the solar panel output when the sun was shining most directly on the panels. So far today, the solar panels have sent 4.7 KWh to the batteries, worth about 47 cents. The refrigerator and freezer are unlikely to use enough energy overnight to force the system to work at its maximum tomorrow. I might turn the system off tonight, so I can turn it on again at 1:00 p.m. tomorrow to see just how fast the panels can go on a summer day. On a sunny winter day, they should do even better.

The system came in a little under budget at $18,280. That includes 6 solar panels rated at 1.7 KW, an inverter/monitor rated at 2.5 KW, and 8 huge 6 volt batteries. In another message I will break down the costs and let you know how much we will get back from the government.